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The generation of internal waves by resonantly interacting surface waves is examined 
in the framework of spectral scattering theory in the random-phase approximation. 
Coupling coefficients are derived from Euler’s equation of motion for arbitrary strati- 
fication. The spectral energy transfer is discussed for deep-water surface waves and 
a simple three-layer model of the stability frequency. Analytical and numerical 
evaluation of the transfer integral leads to  a parametrization in terms of the basic 
model parameters. These are the depth, thickness and stability frequency of the 
thermocline and the scale parameters and bandwidth of the surface wave spectrum. 
Strong dependence on some of these parameters, in particular the surface wave energy 
and the ratio of surface and internal wave frequencies, indicates a large spatial and 
temporal variability of the transfer rate. The transfer to the internal wave field in the 
oceanic main thermocline is found to be negligible compared with the effect of other 
processes. High frequency waves in the seasonal thermocline may be generated very 
efficiently. 

1. Introduction 
Internal waves may be generated by resonant interaction of pairs of surface gravity 

waves. This process has been investigated experimentally and theoretically with the 
aim of establishing its relevance in the ocean. The coupling between standing surface 
and internal waves in a tank has been studied by Joyce (1974), for example. Theoreti- 
cal models of the interaction between discrete waves have been developed by Ball 
(1964), Thorpe (1966), Nesterov (1972), Brekhovskikh et al. (1972) and others. These 
authors represent the interacting surface waves as infinitely coherent, sinusoidal 
waves with deterministic phase relations. Although these models are useful for 
clarifying the dynamics and for demonstrating the possible occurrence of the process, 
the application of the results to the ocean is limited. 

An attempt to estimate the spectral growth of the oceanic internal wave field within 
the framework of deterministic wave components was recently made by Watson, 
West & Cohen (1976). To model the energy transfer from an equilibrium surface wave 
spectrum these authors represent the spectrum by a large but finite set of wave 
components and numerically integrate the time behaviour of all amplitudes and 
phases involved in the interaction. This model may be applicable to a sea state which 
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shows a regular pattern for long times (compared with the interaction time). Even 
for long-wavelength swell where the wave motion can be discerned for some wave- 
lengths, this constraint is only marginally satisfied and the adequacy of the model is 
questionable. In other situations such as the case of wind-sea, when the ocean 
surface wave field shows a random pattern, its spectrum is better modelled by a large 
(in fact a continuous) ensemble of stochastic wave trains than by a superposition 
of deterministic waves. In the case ofa continuous spectrum a wave (as a narrow-band 
superposition of Fourier components) can be identified only for times small compared 
with the spectral bandwidth associated with it. For longer times its identity is lost 
owing to phase-mixing of the spectral components by which it has been supported. 
This is the kind of model which we shall pursue in this paper. It inherently yields 
smaller growth rates, since because of phase-mixing the interacting wave components 
will change their phase relations and go out of resonance much faster than in a deter- 
ministic model where phases change only as a consequence of the mode coupling. 

Generation of internal waves by surface waves is one of the few processes for which 
the modification of the internal wave spectrum can be discussed at present because 
surface wave spectra are known and thus the input function can be computed. In 
his general theory of geophysical nonlinear interactions Hasselmann ( 1966, 1967) 
derived a spectral transfer equation which adequately describes the interaction of 
waves in random wave fields. This concept was pursued by Kenyon (1968), who 
determined the energy transfer from an observed swell spectrum to the first internal 
wave mode in shallow water. Using a constant stability-frequency stratification, he 
came to the conclusion that the observed level of internal wave fluctuations could not 
have been generated by the observed swell. Joyce (1974) pointed out that this con- 
clusion must be reconsidered using more realistic models of the stratification because 
the coupling strongly depends on the overlapping of surface and internal wave modes. 

The relevance of the process for the oceanic internal wave field is thus still unclear. 
We discuss the spectral transfer from the surface to the internal wave field in the frame- 
work of Hasselmann’s transfer equation. Though the interaction coefficients are 
derived for the general case, the further analysis is restricted to surface waves in a 
deep ocean. A simple three-layer model of the stability frequency is used which repre- 
sents either the oceanic main thermocline or a seasonal thermocline. The spectral 
transfer rates are computed by analytical and numerical means to derive a para- 
metrization in terms of the basic model parameters. These are the thermocline depth 
and thickness, the maximum stability frequency in the thermocline, and the scale 
parameters and bandwidth of the surface wave spectrum. Details of the shape of the 
spectrum turn out to be of minor importance with the exception of the spectral widths 
of the distributions of wavenumber and wave-direction. 

The parametrization of the transfer rate reveals a strong dependence on some of 
the model parameters, in particular the frequency ratio of surface and internal waves 
and the surface wave energy. Since these quantities show a large temporal and spatial 
variability in the ocean the magnitude of the transfer changes by some orders of 
magnitude for different oceanic parameter ranges. Nevertheless we may conclude the 
process has no influence at all, even under extreme conditions, on the universal equili- 
brium internal wave field in the main thermocline. Owing to the stronger stratification 
and the resulting smaller frequency gap between surface and internal waves the 
process is far more effective in the seasonal thermocline. It may be of significant 
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importance for the waves trapped in the seasonaI thermocline. We expect that the 
interaction can be identified in high frequency data of the upper ocean because of the 
strong parametric dependence and outstanding directional distribution of the transfer 
rate. 

In $ 2  we derive the response in the internal wave modes to arbitrary forcing. 
Section 3 and appendix A present the forcing function of resonantly interacting wave 
components and introduce the spectral transfer equation describing the spectral 
energy flux from the surface wave field to the internal wave modes. In  $ 4  we discuss 
the transfer for a deep ocean. Section 5 constitutes a summary of the results. 

2. The internal wave response to arbitrary forcing 
The ocean will be described as an incompressible, stratified, rotating fluid of infinite 

horizontal extent. We shall use Cartesian co-ordinates (x l ,  x2, x3 = z )  with the x3 axis 
pointing vertically upwards. We separate the density and pressure fields into the mean 
equilibrium fields p(x3) and p ( x 3 ) ,  related by 

dp/dx3 = -gF, (2.1) 

and the deviations p(x j ,  t )  and p(x,, t ) .  The equations of motion then take the formt 

(2.2) i p{at".I$.€ijkfiuk}+gip+aip = xi (i = 3 ) ,  

 at^ + ~ 3 d $ / d ~ 3  = 8 4 ,  

aiui = 0, 

where fj = Sj3 f and gj = 6,g. The nonlinear terms have been collected on the right- 
hand side by defining 

(2 .3)  } 82 = - p u j a j ~ i - p ( a t U j + € i j k f i U k }  (i = 1,2,3), 
s4 = -u ja ip .  

A t  the free surface x3 = c(x,, t )  the kinematical and dynamical boundary conditions 

a , g + u , a , g - ~ ~  = 0, p + p  = o (2 .4)  

are to  be satisfied. The atmospheric pressure has been included in j5. By expansion 
about the undisturbed free surface x3 = 0 the nonlinear terms in (2.4) may be separated. 
We find 

with 

at  x3 = 0, 
atg-u3 = s, 
I , - P g Y =  8 6  

s, = ga3u3-u,aag+ ..., 
& = igzgdp/dx3-ga3p+ ..., 

correct to second order in the field components. 
A t  the bottom x3 = - H + h(x,) the boundary condition 

t Latin indices i ,  j, k = 1, 2, 3, Greek indices a, p = 1, 2. eijk = 1( - 1) if ( i ,  j ,  k )  is an even 
(odd) permutation of (1, 2, 3), B * , ~  = 0 otherwise. caaa = 1( - 1) if (a, ,8) is an even (odd) per- 
mutation of (1, 2), cab = 0 otherwim. 
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states the vanishing of the normal velocity. If we expand (2.7) about the mean water 
depth x3 = - H we obtain 

with 

correct to O(h2).  

manipulations to 

with the boundary conditions 

u3 = S, at x3 = - H  (2.8) 

(2.9) S, = u,a,h - h&u3 - &h2a;u3 + ha3(u,a,h) + . . . , 
The equations of motion and boundary conditions can be reduced by standard 

=Y[u3] = p-la,pa,[a? + f 2 ]  u3 + a;[a? + N2] u3 = Q1, (2.10) 

[a;+f2]33u3-ga;u3 = Q2 a t  xg = 0, 

u3 = Q3 at x3 = - H .  
We have introduced 

(2.11) 

(2.12) 

which is the stability frequency associated with the basic stratification, which we 
assume to be stable. The forcing functions Q1, Q2 and Q3 can be expressed in terms of 
the S, as 

(2.13) 1 Q1 = p-l{a: (at 8 3  - gs,) - a3 au(at #a + f “aj SF)}, 
Q 2 - - P -- 1{a;(a,s6+gpS5)-aa(a,xu+fSaaSF)}, 

Q3 = 8,. 

As the forcing functions Qr depend on all field components, (2.10) and (2.11) are not 
closed. Their advantage becomes obvious when dealing with weak-interaction prob- 
lems. The lowest-order fields are then obtained from the linearized equations of motion, 
and the response may conveniently be calculated from (2.10) and (2.11). Also the 
response to external forcing may be obtained as any of the Sj may be identified with 
an external forcing field, e.g. the atmospheric pressure ( 8 6 )  or an imposed displace- 
ment a t  the surface (S5). 

If Q, = 0 ( j  = 1 ,2 ,3 )  the solution of (2.10) with boundary conditions (2.11) may be 
represented as a superposition of linear free gravity waves:? 

(2.14) 

with arbitrary amplitudes A;. The (real) vertical normal mode $,h(z) is the solution 
of the eigenvalue problem 

u3(x, z, t )  = A,h&(z) exp [i(k . x - w i t ]  + C.C. 
k, 

I 1 N2- w2 - @$’)’ + k2 ~ 

P & - f 2  $ = O ,  

$!-- gk2 4 = 0 at x3 = 0, 
I (2.15) 

$ = 0  at x 3 =  - H ,  ) 

with eigenvalue o2 = ( ~ 2 ) ~ .  This eigenvalue problem yields the surface gravity wave 
mode h = g and an infinite set of internal gravity wave modes h = 1,  2, . . . for which 
o is confined betweenf and the maximum stability frequency. 

t We shall use z = 2% and use a prime to denote d/dz. x and k are horizontal vectors. 
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From (2.15) we find the orthogonality relation 

(2.16) 

The normalization has been chosen in order to simplify the notation for the total wave 
energy [see (3.8)]. 

The response in the internal wave mode h due to the forcing Qi is derived by evaluat- 
ing 

(2.17) 

Using the eigenvalue equation (2.15) and the boundary conditions (2.11), the left- 
hand side reduces to 

u3(x, z, t) = thQk(Z, t )  eik.I 
k 

on the mode A. i.e. 

(2.19) 

(2.20) 

According to (2.17) and (2.18) these modal amplitudes satisfy 

0 

ti: + (w,")2ai = - ( - dzp$6,"Qlk+p~,"&ulz=o+P($6:)' [a;+f21 Q 3 k l z E - ~ ) .  (2.21) 

The structure of Q, and Q2 allow simplification of the forcing term in this equation by 
partial integration. This yields 

k2 - H  

where 

(2.23) 

Equation (2.21) or (2.22) may be used to obtain the internal wave response to any 
forcing which can be cast into the form of the 8,. 
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3. The spectral transfer equation 
The structure of the linear wave field is obtained by solving the homogeneous 

linearized equations of motion (2.2) and boundary conditions (2.5) and (2.8). This 
yields the familiar free-wave solutions with a vertical normal-mode structure: 

( iw,  k, -f “aj kj) d ldz  I] = ?$[ ij7(wR :;’ -fZ) d ldz  ] q5A(z)exp{i(k.x-wAt)}. (3.1) 

We have simplified the notation by using the subscript A for (A ,  k). Reality of the 
fields is achieved by introducing negative mode numbers and defining 

A_, = AX, w-A = - u A ,  $-A = (3.2) 

where - A  is an abbreviation for ( - A ,  -k) .  The summation is always over positive 
and negative mode numbers as well as over all wave vectors k (generally a continuum). 

The lowest-order response due to the presence of the linear wave field (3.1) is ob- 
tained by evaluating the Qj correct to the second order in the linear wave amplitudes. 
The structure of the result 

iiA +w2,aA = X A,A.D_,,,exp { -i(w,+ w y )  t }  (3.3) 
P, ,, 

can easily be perceived. Here we usep = (p, kp) and v = (v, k,,). The coupling coefficient 
D+,” is given in appendix A. It is symmetric in p and v. Note that by construction 
D--Apv is defined only for positive mode numbers A. If we use the convention that it is 
independent of the sign of the mode number A, then 

D-A, -/1, -v = D?,‘.. (3.41 

Equation (3.3) is the familiar evolution equation for the amplitudes of interacting 
wave triads. It has been frequently discussed in the literature (e.g. Hasselmann 1966; 
Phillips 1974). Also, the derivation of the spectral transfer for a weakly interacting 
stochastic quasi-Gaussian ensemble of waves has been demonstrated in various papers 
(e.g. Hasselmann 1966, 1967; Davidson 1967). The random-phase approximation 
yields the spectral transfer equation 

which describes the rate of change of the spectrum of the Ath mode 

The angle brackets denote the ensemble average. Conservation of the wave energy 
has been assumed to derive the scattering integral in the form (3.5), which involves 
only one scattering cross-section 
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This is an apriori result when working in a Lagrangian framework (Hasselmann 1966, 
1967), where the coupling coefficients are inherently completely symmetric and the 
conservation theorems may be deduced. 

The normalization (2.17) of the vertical modes has been chosen such that FA is the 
spectrum of the total wave energy per unit surface area: 

In the last identity we have switched to a continuous representation of the spectrum 
by defining 

where Ak is the wavenumber increment in the Fourier sums used so far. For our goal 
of investigating the transfer from the surface gravity wave field to the internal wave 
modes we need only the first term in the curly bracket of (3.5). Sorting out the terms 
with ,u, u = & g, we find that the transfer is 

FA(k) = F J ( A I ~ ) ~ ,  (3.9) 

SA(k) = W2/d2kl/d2k2Fg(kl) Fg(k2) 

x (6(k1+ k2 - k) S(w1+ w2 - 0) T-,+ (3.10) 

+ 26( k, - k2 - k) - 0 2  - w )  T-Afi-,}, 

where ,u = (g, k,) and u = (9,  k2). Here and in the following analysis we only use 
positive frequencies; thus w = w,,, w1 = wfi and w2 = w, are the positive internal and 
surface wave frequencies, respectively. The transfer rate SA(k) describes the initial 
rate of change of the internal wave spectrum in the absence of internal waves, i.e. 
with initial conditions FA(k, t = 0) = 0. If internal waves are excited SA(k) still gives 
the transfer from the surface waves to the internal waves, but to describe the entire 
coupling between the fields all terms in (3.5) with either ,u or u equal to g must be 
considered. 

The first term in the curly brackets of (3.10) scarcely contributes to SA(k) taking 
observed spectral distributions of surface wave energy. The surface wave frequencies 
are much larger than Nmax, so that the resonance condition w l + w 2  = w cannot be 
satisfied. Therefore the energy transfer from the surface gravity wave field to the 
hth internal wave mode reduces to 

SA(k) = J d2kl Fg(kl) Fg(kl - k) T6(wl  - w2 - W )  (3.11) 
with 

T = ( 2n/w2) 1 D I ~ ;  f;.&Lk1 I '. (3.12) 

In  the ocean the surface wave energy is located within a frequency range which is 
separated by a t  least an order of magnitude from the frequency band of internal waves, 
i.e. we have oj w .  Unless w comes close to the maximum stability frequency we also 
have kj p k and conclude from the resonance conditions 

w = w1-w2, k = kl-k2 (3.13) 

that the interacting surface wave components must propagate almost parallel to 
each other. A more detailed analysis of the resonance conditions follows in the next 
section. 

The transfer rate SA(k) describes the change in the total energy per unit surface 
area. Changes in the local quantities can be obtained from the representation (3.1). 
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For instance, the local transfer rate for potential and horizontal kinetic energy are 
related to P(k)  by 

S ~ ~ t . ( k ,  z, = *P(z )  N2(z )  ( # h ( Z ) / W A ) 2  SA(k) (3.14) 
and 

%n(k, 4 = i P ( 4  (k-1#;)2 S*(k) (3.15) 
respectively. 

4. The spectral transfer in a deep ocean 
In  this paper we shall discuss the spectral transfer for only rather simple models of 

the stratification and the surface wave spectrum. The aim is to establish the basic 
structure and magnitude of the transfer and its dependence on the basic parameters 
of the models. Results for observed stratifications and spectra will be considered in a 
separate paper. Moreover we restrict ourselves to surface waves in a deep ocean 
(i.e. k,H B 1 , j  = 1,2) ,  where the surface wave mode and eigenfrequency are given by 

#,(z) = (k/Po)Jekz, 0, = (9kP. (4.1) 

The mode has been normalized in accordance with (2.16) and (3.8) and po is the 
density a t  the surface. 

It is convenient to transform (3.11) to horizontal polar co-ordinates (k,$) and 
eliminate the &function. This yields a form which is suitable for analytical and nu- 
merical treatment: 

The quantities with subscript 2 can be eliminated by means of (3.13), which yields 

and 

k, = (k2 + k2, - 2kk, cos y)J, 

$2 = $-(a+y)sgnW-$1)9 
a = arcsin {(klk,) sin y }  

(4.3) 

(4.4) 

where a is the angle between k, and k, and y the angle between k and k,. The function 
cosy is shown in figure 1 for various values of s1 = w/(gk)* (for oceanic conditions !J 
is always small compared with 1).  R,esonance is possible (i.e. Icosyl < 1)  in the 
interval klmin < k, < klmax where 

Figure 2 gives a schematic representation of the possible resonant triplets k,, k, and k. 
The integrand in (4.2) becomes singular at  the integration limits since 

These (integrable) singularities pose no serious problem since for reasonable conditions 
the surface wave energy is confined to wavenumbers k, with k,,,, < k, < klmm. 
For numerical evaluation the singularities can be separated and treated analytically. 
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FIGURE 2. Schematic graph of the resonance curve. If (00s y (  < 1 
there are two resonant triplets for each k. 
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FIGURE 3. Dispersion relations of the surface wave mode and the internal 
wave modes in a seasonal thermocline. 

For surface waves in deep water the transfer function (3.12) simplifies greatly 
because of the simple structure of 9, and wo. We find 

where p = (g, k,) and Y = (g, k2). 

4.1. Models and basic parameters 

As a model for the stability frequency N ( z )  we take a simple box 

No for -d, 2 z 2 - d 2 ,  

0 otherwise. 
N ( z )  = 

The internal wave modes are then sinusoidal inside the box and exponentially decreas- 
ing towards the surface z = 0 and the bottom z = - H (for details see appendix B). 
This model has the advantage that the transfer function (4.7) can be evaluated ana- 
lytically. Moreover, the parameters No, d, and d, can be adjusted to model either 
main thermocline or a seasonal thermocline in the ocean. The model is able to represent 
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only one of these thermoclines at a time, but this is not a serious restriction since the 
energy is transferred mainly to high frequency internal waves (i.e. to frequencies 
around +No). The internal wave modes a t  these high frequencies of the main thermo- 
cline are almost unaffected by a thin seasonal thermocline. This applies also to high 
frequency modes in the seasonal thermocline if &V,, and the maximum stability fre- 
quency in the main thermocline are well separated. Since the energy transfer is con- 
centrated at  high frequencies (o sf) we shall for simplicity neglect the rotation. 
Figure 3 shows the dispersion relation for internal waves for the box model of N ( z )  
with parameters appropriate to a seasonal thermocline. Included is the relation (4.1) 
for the surface wave mode, 

It is convenient to represent the surface wave spectrum in the form 

W k ,  21.1 = E(k)  A (4, k ) ,  (4.9) 

where the directional distribution (spreading function) A($, k )  a t  each wavenumber 
is normalized to one. Then E(k)  is the wavenumber spectrum of the total energy: 

E = p,g(g2) = / :dkE(k) .  (4.10) 

It will be demonstrated below that the transfer rate depends only on some basic 
parameters of the wavenumber distribution E(k) .  These are the scale parameters 
(total wave energy E ,  and peak wavenumber k,) and the (scaled) bandwidth 2u, 
of the spectrum, which will be defined such that its product with the mean energy 
level yields the total energy, i.e. 

2gEkm joa dk $) E(k)  = E ,  

or 2uE = ( IOm dkE(k) ) ’ / j om dkE2(k) .  
km 

(4.11) 

Other shape parameters are comparatively unimportant. 
The shape of the directional distribution has a strong influence on the shape of 

SA(k,  $). However, it  will be shown that the wavenumber distribution of the transfer 
rate, 

and the total transfer rate, i.e. 

S* = joa dkSA(k) ,  

again depend only on the bandwidth 

(4.12) 

(4.13) 

(4.14) 

of A($, k )  and not significantly on any other shape parameter. 
These properties enable us to discuss the transfer integral and derive a parametriza- 

tion of S*(k, $) and its integrals (4.12) and (4.13) without specifying the surface wave 
spectrum in more detail. The analytical discussion in the next section applies to 
rather general spectra E(k)  as long as they decay rapidly enough and a dominant 
wavenumber scale k, can be defined. Also the spreading function is arbitrary. For 
numerical computations we use completely factorized models, i.e. A($, k )  = A($),  
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and assume that the distributions E ( k )  and A($)  are both smooth functions with a 
single peak at k = km and $ = 0, respectively. This model class allows one to repre- 
sent one-peaked wind-sea or swell spectra but excludes, for example, a superposition 
of wind-sea and swell or different swell bea,ms. 

4.2. Parametrization of the transfer integral 

The insensitivity of the transfer rate to the details of the shape of the spectrum E ( k )  
is due to the great difference in the scales of the internal waves and interacting surface 
wave components. Only closely neighbouring spectral components in the surface 
wave spectrum interact, so that the transfer integral (4 .2 )  loses its property of 
being a convolution of the spectrum with itself. Each contribution to S A ( k , $ )  of 
interacting pairs is rather weighted by the square of the local spectral level. Since 
the transfer function (4 .7 )  and the Jacobian (4 .6 )  vary slowly compared with the 
spectrum (if klmin < (1  & g E )  km < klmax) the convolution approximately reduces to 
an integral of the spectrum squared, which is completely determined by the band- 
width. These considerations will be pursued to establish a parametrization of the 
transfer rate by the basic parameters’of the spectrum and the stratification. 

Expanding the transfer integral (4 .2 )  with respect to the ratio of internal and sur- 
face wave frequencies (or formally with respect to Q = w/(gk) l  < 1) and the ratio 
of the wavenumbers ( k l k ,  < l),  we obtain to lowest order 

The wavenumber distribution has been expressed as 

E ( k )  = (E lk , )  G(k/km), (4.16) 

where G(z) is normalized to 1. By taking the upper limit as infinite we have to assume 
that the spectrum decreases fast enough so that the integral converges. The function 

(4.17) 

is a remainder of the transfer function (4 .7) .  This is an O ( P )  quantity which expresses 
the weak coupling between the fields. 

The derivation of (4.15) requires not only Q < 1 and k /km < 1 but also k,, < kl,,,, 
or equivalently, 4Q2 < k /km.  If 4R2 and k /km are of the same order of magnitude we 
get x Az($+s7r) as the angular distribution and k/(4Q2km) as the upper integration 

limit. Then the transfer rate will strongly depend on the shape of the spectrum. This 
situation, however, occurs only if the spectral peak is a t  rather small wavelengths. 
Such spectra generally have only small energy and the transfer will be negligible. 

If HA(x, k) and A($, zkm) vary only slowly compared with G(z) we may approximate 
the transfer rate by 

S 

8A(k,$) M 167rE2 HA(1,k)  2 A2($++s7r,km) d z x 4 G 2 ( z ) .  (4.18) 
9= f 
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k X  103(cm- ' )  

FIGURE 4. Three models of the surface wave spectrum with 2 U E  = 1.2. Analytical representation 
given in appendix C. Spectral parameters given in appendix D. 

IL 
FIGURE 5. Three models of the spreading function with 2 u ~  = +. 
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!i (an-' ) 

FIGURE 6. Contour of X1(k, @) computed for the combination PL-A, and a seasonal 
Units are ergs/cm2 s per em-' rad. Spectral and stratification parameters given in 

thermocline. 
appendix D. 

This expression reflects the insensitivity of SA(k,  $) to the details of shape of the spec- 
trum since 

(4.19) 

if G(z) decays rapidly enough away from the peak (cf. appendix C). 

From (4.15) and the definition of rA we find 
The wavenumber distribution SA(k)  may be derived without specifying A (@, k). 

(4.20) 

which turns out to be insensitive to the details of the directional distribution except 
the bandwidth ua. These appIoximations and the resulting statements about the 
insensitivity of the transfer rate to the shape of the spectrum have been confirmed by 
numerical evaluation of the transfer integral (4.2). Figure 4 shows three models of 
E(k)  with same E,  km and wE but different shapes, and figure 5 shows three models of 
A($)  with same bandwidth wA (in the half-plane &r < $ < $r all models of A($)  
are zero). Figure 6 is a contour plot of S ( k ,  @) computed for the power-law model PL 
combined with the directional distribution A2($) .  Since SA(k, @) is symmetric with 
respect to the mean propagation direction $ = 0 of the surface wave field, the figures 
display only the contours for 0 < @ B 7r. Results for the models PM and TH differ 
from PL by less than 10 %. Figure 7 displays XA(k)  for PL and A,; the results for the 
two other directional distributions differ by less than 1%. 
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FIGURE 7. Wavenumber distribution S1(k)  of the transfer shown in figure 6. 

In  the following analysis we shall discuss (4.15) with a stratification given by the 
box model (4.8). The function HA((x, k) becomes 

where b = /3/(2km) and p = pA(k) is the vertical wavenumber of the hth internal wave 
mode (see appendix B). We shall take the spectrum to be completely factorized, i.e. 
A($,  k) = A($).  Then the transfer rate SA(k ,  $) is also factorized. The directional 
dependence turns out to be independent of the wavenumber spectrum E ( k )  and even 
independent of the form and scales of the internal wave guide. Internal waves are 
predominantly generated with wave vectors which are perpendicular to the mean 
propagation of the surface wave field (cf. also figure 6). This feature has already been 
found by Kenyon (1968). It is also supported by satellite pictures by Ape1 et al. (1975) 
showing a wavelike pattern which propagates nearly a t  right angles to the much 
shorter wind waves. If A($)  is of the form indicated in figure 5 each of the two lobes 
of SA(k, $) a t  $ = +n and I+ = - Qn is narrower than the generating surface wave beam 
since generally UAa 6 gA.  

The integral (4.15) may be evaluated analytically for an N(z)  = constant model 
(i.e. d ,  = 0,  d ,  = H )  and a model of a thin thermocline (i.e. (d2-d,) ,8  < 1)  since for 
these cases the dispersion relation of the internal waves can be expressed analytically 
(see appendix B). 

The case N ( z )  = constant has been studied by Kenyon (1968). From (4.15) and 
(4.21) we find 

(4.22) 

where 
C = wmEk%<52) ( N o / ~ m ) ~ *  (4.23) 

SA(k, $) = CJA(k)  I ( b )  C A'($+ &ST), 
8=  * 

The wavenumber dependence is given by 

32n p2k2 
JA(k) = - 

H (Pz+k2)3 (4.24) 
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FIGURE 8. Frequency distribution AS'*(@) of the transfer to an ocean with constant N = 5.25 x 
8-1 (3  c.p.h.). -, numerical integration of (4.2); ---, approximation (4.27), (4.28). 

since the remaining integral 

(4.25) 

affects only the modal distribution of the transfer (for constant N ( z )  the parameter 
b = An/ (2kmH)  does not depend on k). The integral I ( b )  is evaluated in appendix C 
for the spectral models shown in figure 5.  For low modes b Q 1 and 

I (b)  M I (0)  M 1 1 2 ~ ~ .  (4.26) 

For high modes ( A  9 2lc,H/n) the integral decreases strongly with mode number, 
which assures the convergence of the total transfer C SA to the internal wave field 

[see (4.30)]. The transfer rate SA(k,  $) and also the wavenumber density 
A 

SA(k) = C J A ( k )  I ( b ) / g A  (4.27) 

increase quadratically with k towards a peak at P I S 4  = An/2*H and then drop to zero 
like k-4. The distribution of the transfer in the frequency domain, SA(w) ,  is obtained 
by replacing J A ( k )  in (4.27) by 

(4.28) 

which has a maximum at ($)+No.  Thus high frequency waves with wavelengths of 
order H / A  are excited. To demonstrate the accuracy of the analytical approximation 
figure 8 shows the frequency distribution [i.e. (4.27) and (4.28)] for the lowest three 
modes together with the results of the numerical integration of (4.2). 
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FIGURE 9. Wavenumber distribution Sl(k)  of the transfer to a seasonal thermocline for various 
values of d, and A .  --, numerical integration; ---, analytical approximation. The upper three 
solid curves have d, = 20 m and variable A ;  the lower three solid curves have A = 20 m and 
variable 4. The dashed curve has d, = 60 m, A = 20 m. Spectral parameters are given in 
appendix D. 

The total transfer to the hth mode in an ocean with constant stability frequency 

SA = W, E/tA, (4.29) 
may be written in the form 

where tA is the dimensionless time scale 

1 for h < 2kmH/n,  

(hn/2kmH)’ for h 9 2kmH/n.  
(4.30) 

The exponent T depends on the asymptotic behaviour of G(x)  [see (C 211. The expres- 
sion (4.30) indicates that the transfer will be more important the smaller the ratio of 
surface and internaI wave frequency scales, the larger the total energy and average 
slope of the surface wave field and the sharper the wavenumber and angular distri- 
butions. Predominantly low modes are excited. Notice that tA//w, is the time scale of 
energy loss of the surface wave field due to the transfer. A characteristic time scale 
for the internal wave energy EA in the hth mode may be defined by EA/SA. 
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FIGURE 10. Frequency distribution Sh(o) of the transfer to a seasonal thermocline. 

Spectral and stratification parameters given in appendix D. 

To understand the dependence of the transfer on the depth d, and thickness 

A = d,-d1 

of the thermocline we consider the opposite case of a thin thermocline. We may 
neglect the second term in (4.21) and H k ( x ,  k )  = @(O) can be computed from (B 10) 
for the first mode. The transfer rate is of the same farm (4.22) with b = 0 and J l ( k )  
replaced by 

k h  sinh kd, 
[exp (kd,) + kA sinh kd,I3 ' j l ( k )  = 167r A (4.31) 

which also increases quadratically at low wavenumbers but drops exponentially at 
high wavenumbers. Figure 9 displays numerical computations of X1(k) for various 
values of d ,  and A. The dominant wavelength decreases with increasing d, or A and 
is of the order of 1 km. The frequency structure is shown in figure 10. As for the 
N ( z )  = constant model, high frequency waves are generated but a much stronger 
decrease of the transfer with mode number is obtained (see also figure 12). If A < d,, 
we can give an analytical expression for the dimensionless time scale: 

(4.32) 
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The transfer is thus most important for shallow thermoclines. Comparison of (4.30) 
and (4.32) shows that the transfer to a thin thermocline is smaller by a factor 

(A/d1)2 < 1 

than the transfer to a water column with constant stratification (and the same No). 
The parametrizations derived above have been confirmed by numerical integration 

of the complete transfer integral (4.2)) e.g. as demonstrated in figures 8 and 9. The 
transfer in thermoclines with a shape intermediate between the cases considered so 
far has been studied numerically. We found that the dependence on No and the spec- 
tral parameters is satisfactorily described by the parametrization (4.30) and (4.32). 
The dependence on the thermocline depth d, and thickness A is displayed in figure 11 
for spectra with same total energy E and different peak wavenumbers it,. Figure 12 
shows the dependence of the total transfer on the mode number h for two thermo- 
cline depths. Compared with the results (4.30) for N ( z )  = constant, where cc l/h, 
the dominance of the first mode in the internal wave response is considerably enlarged. 

For wind-sea spectra, i.e. spectra which develop under the action of the local wind, 
the parametrization may be expressed in terms of the local wind speed and the fetch. 
The scale parameters k, and E of the Pierson-Moskowitz (1964) spectrum, 

(4.33) 
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depend on the wind speed U as 

(4.34) 

where a = 0.0081 is Phillips' constant. These relations imply that 

SA oc umE2 oc U7.  (4.35) 

The PM-spectrum is a model for a fully developed wind-sea. This form of the spec- 
trum applies to the final stages of development (Hasselmann et al. 1976). It is there- 
fore only rarely found in field data. A parametrization of developing spectra leads to 
the JONSWAP form (Hasselmann et al. 1973, 1976) 

E,(k) = Qpogak-3exp [ -- (kk_)'+lncexp - { -- A2 (@- 9 (4.36) 

where cr = rm for k c km and cr = crb for k > k,. In  addition to the scale parameters 
k, and a this function contains the three shape parameters c, ua and ub. Following 
Hasselmann et al. (1973)' the fetch dependence of the non-dimensional peak frequency 
w * = Uwm/g and energy E = pog3E/ U4 is described by 

W *  = 27 x 3.554, E, = 1.6 x 10-75, (4.37) 

where = g x / U 2  is the non-dimensional fetch and x the actual fetch. The shape 
parameters exhibit appreciable scatter but no significant mean dependence on the 
fetch. The transfer rate then is related to fetch and wind speed by 

L!P cc ( U 4 E , ) 2 ~ , / U  cc U7$. (4.38) 

These considerations are not valid for swell spectra which are decoupled from the local 
wind. 

The relations (4.29)' (4.30) and (4.32) reveal strong dependence of the transfer 
rate on some model parameters, in particular the surface wave energy or r.m.s. dis- 
placement and the frequency ratio of surface and internal waves. (The quadratic 
increase of the transfer with the surface wave energy is of course a trivial result.) 
Further parametrizations such as (4.35) and (4.38) which apply to wind-sea spectra 
suggest a very strong dependence on the local wind speed. We therefore anticipate a 
large spatial and temporal variability of the transfer. If the process is important at 
all (which is examined in the next section) this variability and also the specific direc- 
tionality should help to detect the interaction among other processes in the field 
data. 

4.3. Nagnitude of the transfer 

We shall now evaluate the transfer rate for typical values of the parameters and 
demonstrate the relevance or irrelevance of the process. Because of the invariance of 
the transfer to the shape of E(k) (with the exception of cE) wind-sea and swell spectra, 
need not be considered separately. We take the JONSWAP spectrum (4.36) 
combined with the spreading function 

(4.39) 
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SA (erg/crns s) 

No/2r 4 A 7-v 
(C.P.h.1 (4 (m) h = 1  A = 2  h = 3  

N = constant 1 0 5000 3-1 x 1.5 x lo-'' 1.9 x 10-a 

Main thermocline 3 100 900 3.2 x 8.4 x 3.1 x 
3 500 500 7.3 x 10-5 1.2 x 10-6 8-1 x 10-8 

Seasonal thermocline 15 25 50 5.7 x loda 1.4 x 8.4 x lo-' 
50 50 3.7 x lo-* 4.2 x 10-4 2.1 x 10-5 

20 25 50 1.8 x 10-1 4.3 x 10-3 2.7 x 10-4 
50 50 1-2 x 10-1 1.3 x 10-3 6.7 x lo-' 

TABLE 1. The transfer rate SA ( A  = 1, 2, 3) for some models of the stratification. 
A surface wave spectrum with (c2) = 1 m2 and 2aE = 0.6, = 0.33 was used. 

withp = 1, which yields 2aA = *. This distribution is displayed in figure 5. As typical 
values of the shape parameters of E,(k) we consider the mean JONSWAP values 

which yield a bandwidth 2aE = 1.2. These values agree with the mean shape para- 
meters of 333 spectra which are representative of the wind-sea climate in the Atlantic 
and the North Sea (cf. Hasselmann et al. 1976). Swell in general has smaller band- 
widths aE and a,. 

As scale parameters of the wavenumber spectrum we choose (c2) = 1 m2 
( E  = 9.81 x lo6 erg/cm2) and w J 2 n  = 0.1 Hz (corresponding to  a wavelength of 
156 m). Transfer rates for other values of (c2) and w, follow from Sv a ~,(c2)~. An 
r.m.s. displacement (c2)+ = 1 m may be regarded as typical for the northern Atlantic. 
According to the wave statistics of Neu (1976) the significant wave height H, 
( M 4(c2)4) exceeds 4 m about 20-30 yo of the time and 2 m about 70-80 % of the time 
at latitudes above 50'. Towards the equator H, becomes considerably smaller: 
H, > 4 m about 3 % and H, > 2 m about 40 % of the time. 

Table 1 summarizes the results for three cases of the stratification: an ocean with 
constant N ( z )  = No, models of a main thermocline and models of a seasonal thermo- 
cline. The ocean depth is H = 5000 m. The table mirrors the results of the last section: 
a strong decrease of SA with mode number h and thermocline thickness A and an 
increase with No. The transfer to the seasonal thermocline turns out to be consider- 
ably larger than that to the main thermocline. This is due to the stronger stratification 
(larger No) in the seasonal thermocline and the smaller depth d, of the mixed layer. 
The transfer rates to the wave field in the main thermocline are in strong contrast to 
the recent results of Watson et al. (1976), who obtained growth rates of the order of 
some erg/cm2 s. As pointed out in the introduction, this discrepancy is due to the 
difference in the conception of the spectrum. I n  our calculations we have modelled 
the spectrum by a random ensemble of wave components while Watson et al. used 
a finite set of deterministic waves. Generally a wave which is subject to resonant 
forcing grows much faster if driven by a deterministic field than if driven by a sto- 
chastic field since in the latter case the optimum phase relation for energy exchange 
between the forcing field component and growing wave component will be destroyed 
by phase-mixing of the spectral components which support the wave. The time scale 
tA/wm = E/XA is larger than 1 year even for the largest SA in table 1, i.e. the surface 

c = 3.3, aa = 0.07, a, = 0.09, 
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wave field does not feel the energy loss. To estimate the importance of the transfer 
for the internal wave field we have to evaluate the characteristic time scale EA/SA for 
the energy EA in the hth internal wave mode. 

The wave field in the main thermocline can be described by an universal, quasi- 
stationary spectrum. The energy is spread over many modes. According to the GM- 
model (Garrett & Munk 1975) and the IWEX-model (Miiller, Olbers & Willebrand 
1977) EA is of order lo5 erg/cm2 for the first ten or so modes, so that E1/S1 M 3 x lo8 s 
N 10 years. If we consider that the process generates high frequency waves only we 
get a smaller time scale. The energy E& in the high frequency part (say o > g N )  of 
the internal wave spectrum is of order EAf I N .  This yields 

Eif/S' M 1 month. 

characteristic time scales of other processes affecting the main thermocline wave 
field are of the order of several periods (cf. Miiller & Olbers 1975). In  the high frequency 
region we frequently find time scales that are even less than a period, e.g. the time 
scale for nonlinear interactions within the wave field (Olbers 1976; McComas & 
Bretherton 1977). Thus the process is completely unimportant for internal waves in 
the main thermocline. 

Internal waves which are trapped in the seasonal thermocline show quite different 
properties from the main thermocline wave field. These high frequency waves occur 
(frequently as bursts of distinct wave groups) intermittently in space and time 
(Sabinin 1973). The energy is predominantly in the first mode (Brekhovskikh et al. 
1975). The slope of the spectrum at high frequencies shows a large variability. Fre- 
quently there is a broad peak or plateau in the spectrum well before the stability 
frequency, e.g. in the GATE-spectra (Kase & Clarke 1978). The local energy in the 
high frequency part of the spectrum is typically of order 1-5 erg/cm3, which vertically 
integrates to about lo4 erg/cm2. This yields a characteristic time scale 

Ells1 z 1 day 

for the response in the first mode. Referring to the parametrization (4.32) of the 
transfer rate, we must conclude that in extreme situations the surface wave field is 
able to generate high frequency waves very efficiently in the seasonal thermocline, 
e.g. for ( 5 2 )  = 2 m2, vA = uE = 4 yields E1/S1 x 0.1 day. But even in rather calm 
situations the process may play an important role if there is a strong stratification. 
The coarse agreement of the modal decomposition of the transfer (cf. figure 10) with 
observations might be evidence for the occurrence of the interaction. However, other 
processes, e.g. resonant generation of internal waves by wind-stress fluctuations, 
show a similar modal dependence (Kase 1979; see also $ 5 ) .  Also, the burst-like occur- 
rence of high frequency waves in the seasonal thermocline can be explained by the 
onset of storms or the intersecting of swell beams. For such cases there will be a 
sudden increase of the transfer rate because of the strong dependence on the wind speed 
or surface wave energy. 

5. Summary and conclusions 
The spectral energy transfer from surface to internal waves has been studied to 

establish its importance in the ocean. The spectral transfer equation and the coupling 
coefficients have been derived in a general form by weak-interaction theory. The 

13-2 
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further discussion was restricted to surface waves in deep water and to a simple 
three-layer model of the stability frequency: a thermocline with constant stability 
frequency and homogeneous top and bottom layers. This is still a reasonable model 
since the process generates high frequency waves whose modal structure is almost 
unaffected by the details of the stratification outside the thermocline. The wave- 
number distribution of the surface wave spectrum did not need to be specified in 
more detail than by its scales and its bandwidth since the transfer rate turned out to 
be insensitive to the shape of the spectrum with the exception of the bandwidth. For 
this reason a distinction between swell and wind-sea is not necessary. Numerical 
evaluations of the transfer rate were performed using the spectral models of Pierson & 
Moskowitz (1964), JONSWAP (Hasselmann et al. 1973) or simpler ones, combined with 
spreading functions which are symmetric about a dominant propagation direction. 
Analytical results have been derived for arbitrary spreading functions. The insensi- 
tivity of the transfer to the shape of the spectrum could be attributed to the great 
difference in the scales of the interacting fields. Only close neighbours in the spectrum 
can satisfy the resonance conditions. This feature has been exploited to derive a 
parametrization of the transfer integral in terms of the basic parameters of the strati- 
fication and the spectrum. For wind-sea spectra the parametrization can be carried 
further by introducing phenomenological relations between the spectral scales and 
the local wind speed. A strong dependence of the transfer on some model parameters 
is revealed, in particular the ratio of internal and surface frequency scales, the signi- 
ficant wave height, and the local wind speed. The transfer rate therefore has a large 
variability in space and time even if the ranges of relevant parameters are narrow 
(e.g. doubling the wind speed increases the transfer by two orders of magnitude). 

For the parameter regime of oceanic main thermoclines the transfer is negligibly 
small. Assuming that our stochastic model is applicable to the ocean surface wave 
field in the mean, this process must definitely be excluded from the list of possible 
candidates for maintaining the internal wave field in the main thermocline. In some 
situations a deterministic model such as the one of Watson et al. (1976) may be a 
more realistic description of the sea state (e.g. in the case of long swell waves). Then 
the transfer may locally be larger but the process still does not contribute to the 
overall energy balance of the ocean internal wave field. 

The frequency gap between surface waves and internal waves which are trapped 
in the seasonal thermocline is smaller than the gap between surface waves and internal 
waves in the main thermocline. The coupling to the seasonal thermocline is therefore 
considerably stronger. For moderate surface wave conditions we find characteristic 
transfer times of the order of a day. In  extreme situations such as strong storms or 
crossing swell components of high amplitude the time scale will be a fraction of a day. 
Concerning global variability, the process is presumably most effective in higher 
latitudes. The transfer indeed decreases with the thermocline depth, which is larger 
at  high latitudes, but the rougher surface wave field in this region will dominate this 
effect. 

The process shows some outstanding features which may help it to be observed in 
the field data and distinguished from other processes which generate internal waves 
in the seasonal thermocline. The response is predominantly in the first mode at  high 
frequencies, and the horizontal wavelengths are of order 1 km. The wave vectors of 
the internal waves generated are nearly perpendicular to those of the surface waves, 
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so that for collimated beams of surface waves we shall find a characteristic directional 
pattern in the response. Finally, the response will have a marked intermittent structure 
in space and time because of the strong parametric dependence of the transfer rate. 
Most observations of high frequency waves in the seasonal thermocline show these 
properties. This, however, is not sufficient evidence for the process since many pro- 
perties are shared by competitive processes, e.g. resonant generation of internal waves 
by atmospheric pressure or wind-stress fluctuations. The reason becomes obvious on 
rewriting the approximation (4.15) made for the seasonal thermocline in the form 

This expression shows that the modal and wavenumber (or frequency) dependence 
is exclusively determined by the waveguide and not by the external forcing field, 
which determines only the directional distribution and the magnitude of the transfer 
rate. Consider now the resonant response to atmospheric pressure fluctua,tions des- 
cribed by a spectral transfer rate 

or to wind-stress fluctuations with 

These transfer rates may be derived from the internal wave response equation (2.22). 
The modal and wavenumber dependence of these functions closely resembles (5.1). 
If the pressure spectrum Fp(k, $) w )  and the wind-stress spectrum F,(k, $, w )  are flat 
in the resonance region the three transfer rates will indeed be distinguishable only by 
their magnitudes and directional distributions (at high frequencies w2/gk varies 
only slightly, cf. figure 3). Insufficient knowledge of the wavenumber and frequency 
structure of the spectra Fp and F, a t  present prevents a detailed theoretical analysis 
of (5.2) and (5.3) in the high frequency region (the low frequency response has been 
treated by Kase 1979). The problem of the relevance of the different transfer mecha- 
nisms can be solved by correlating time variations of the response, i.e. parameters of 
the internal wave spectrum, with the different surface forcing. This is one of the aims 
of the JASIN-experiment. 

This research was supported by the Deutsche Forschungsgemeinschaft and is a 
contribution of the Sonderforschungbereich 94, Meersforschung, Hamburg. Helpful 
discussions with Dr Rolf Kase and Dr Dieter Hasselmann are gratefully acknowledged. 

Appendix A. The coupling coefficient for wave-wave interactions 
General expression 

The coupling coefficient DWAyv is obtained by inserting the linear solutions (3.1) into 
the source terms Sj (correct to second order in the wave amplitude as defined in 5 2) 
and evaluating the forcing term of the internal wave response equation. This yields 
an expression of the form 

~ A , A , G - h p v e x P ( - i ( ~ , + w v ) t }  
F. v 
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with an asymmetrical coefficient G-+,. The symmetrical (in the last two indices) 
coupling coefficient is then given by 

D-Apr  = W A p v  + G-Avpl. 
Explicitly we find (forf = 0) 

The operation of symmetrization has been abbreviated in an obvious manner. The 
coupling coefficient has been reduced somewhat by partial integration and use of 
the eigenvalue equations (2.15). A simple correspondence between the surface (T) and 
volume terms (R and 8) in DdApv and the surface (S,, S,) and volume (Si, i = 1, . . . ,4)  
forcing functions is therefore no longer possible. 

The coupling coefficient in the form (A 2) still applies to arbitrary modes A, ,u and v 
and ocean depth H .  The order of magnitude of the various terms and their import- 
ance depend strongly on the kind of modes we want to consider. If all three modes 
are; internal waves the volume terms generally dominate since the vertical displace- 
ment at the surface due to internal waves is very small. 

If ,u and v correspond to surface waves, the case we want to study, surface and 
volume terms may be of comparable magnitude. This seems to be paradoxical since 
the surface term seems to vanish if we define the internal wave modes by changing the 
surface boundary condition of (2.16) to the rigid-lid approximation = 0 at  z = 0. 
However, in this case we have to use a different forcing in the internal wave response 
equation (2.22) which is similar to that associated with the bottom term. The coupling 
coefficient then would have a surface term proportional to q5;(0). 

Problem of the Boussinesq approximation 

There has been some discussion about the use of the Boussinesq approximation in 
deriving the coupling coefficient, in particular for the case of surface-internal wave 
interactions (Brekhovskikh et al. 1972). The Boussinesq version of D-+ is obtained 
by expansion of (A 2)  with respect to 6 = L, p'/po, where L, is the vertical scale of the 
waves considered and po is the average density of the water column. As L, < H and 
pol,-' = O(200 km) we have 6 < 1.  

If ,u and v are internal wave modes all terms in D-Ap,, are O(1) except those which 
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are proportional to l /g.  These are O(6) and thus negligible. The Boussinesq approxi- 
mation of the eigenvalue problem (2.16) is 

with a2 = ( - g/po) p‘. 
If ,u and v are surface waves we find a quite different result. Here L, = l/kg thus 

so that terms proportional to N2/w;  are also O(6) .  This applies to all terms in (A 3) 
(even the surface term), so that the complete coupling coefficient D,, is O(6).  The 
Boussinesq approximation is thus not applicable in this case. The internal wave mode 
A, however, may be determined from the Boussinesq version (A 4) and the surface 
wave mode from the corresponding O( 1)  eigenvalue problem 

# n  - k2# = 0, 

# = O  at z=  - H .  ) 
The coupling coefficient D-APv is then correct to O(6).  

Coupling coeficient for surface-internal wave interactions in deep water 

The coupling coefficient D-A,,, simplifies greatly for surface waves in deep water. 
Using w: = gk and 4; = k#Q, we find that many terms cancel (in particular S-,,,‘, = 0) .  

Notice that the coefficient is separated into a geometrical factor depending on the 
relative orientation of the interacting wave vectors k, and k, and a factor which is 
independent of the geometry. The geometrical dependence implies that for sum 
interactions (both frequencies positive) the coupling is zero for parallel k, and k, 
while for difference interactions (one frequency negative) the coupling vanishes if the 
vectors are antiparallel. 

Appendix B. Internal wave eigenfunctions 

The solution of the eigenvalue problem (A 4) is given by 
As a basic model for the stability frequency N ( z )  we choose the box model (4.8). 

AS(kz)  for 0 2 z 2 -al, 

Dsinhk(z+H) for -a2>, z >, - H ,  
Bsin,5z+Ccos/3z for -d, 2 z 2 -a2, 
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with 

and 
S(x)  = $(eZ-se-").  

The upper boundary condition in (A 4) is satisfied if 

1 - w2/gk 
1 + w2/gk ' 

€ =  

The rid-lid approximation, i.e. $(O) = 0, is obtained as the lowest-order term of an 
expansion with respect to w2/gk ,  which yields E = 1. 

The values of A ,  B ,  C and D and the dispersion relation are obtained from the 
normalization condition 

and the continuity of q5 and $' a t  z = - d, and z = - d,. We find 

(B 7)  
C 
B 

sin /3d, + ( P / k )  tanh k(H - d,) cos /3d, 
cospd, - ( P / k )  tanh k(H - d,) sinpd, * 

y = - =  

The dispersion relation is 

/3 tanP(d,-d,) = -- k 1 + (P2 /k2)  tanh k(H - d,) T (  - kd,) 
tanh k(H - d,) - T( - kd , )  

with T(x)  = (el  - ee-")/(e" + Be-"). (B 9) 

There are solutions of (B 8) at discrete values of P = P A ( @ ) ,  which yield the frequencies 
w = OJ; ( A  = 1 , 2 , .  ..) of the internal wave modes. 

Equation (B 8) is easily solved for a constant stability profile (d, = 0, d, = H ) .  
To lowest order in d / g k  the vertical wavenumber becomes P A  = An/H.  The normali- 
zation constant (B 6 )  is B = (2/po H ) i  W I N o .  Also, the opposite case of a thin thermo- 
cline, i.e. (d,-d,)p < 1, can be treated analytically (cf. also Phillips 1977, p. 211). 
We find for the first mode 

kA 
O 1 + kh + coth kd,' 

w2 = N2 

sinh k(H - d,) 
sinh k d ,  

= - D  1 A = E  
No (po A)+ sinh k d, 

with A = d,-d,. 
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Appendix C. Evaluation of the integral I ( b )  

I ( b )  = lom dxxt Gz(x) (2) xZ+b2 ' 

where G(x) is the normalized surface wave spectrum defined by (4.16). The integral 
I ( b )  exists if G(x) decays fastef than x-4. We are particularly interested in the beha- 
viour for b < 1 (low modes) and b 9 1 (high modes, convergence of the total transfer). 
We shall evaluate I(b) for three models of G(x) (special cases are displayed in figure 4) 
and find that for b < 1 

and forb b 1 
I ( b )  = A(1-3Bb2+ ...) (C 1) 

if G(x) N x-9. If G(x) decays fast enough (q  > y )  the constants A ,  B and C become 

A M C z 1/2a,, B z 1. (C 3) 

For all three models I ( b )  can be expressed in terms of special functions which are 
tabulated in Abramowitz & Stegun (1 964). The integral can be found in Gradshteyn 
& Ryzhik (1965) if the transformation 1 = 1/x2 is made, which casts I ( b )  into the 
form 

q t  
I(b) = - Gy1-4). IOa drl (1 + yb2)2 

The results for the three models are as follows. 
(a)  Top-hat model 

I/ZgE if Ix-11 < r E ,  

0 otherwise, GTH(X) = { 

A = C = 1 /2gE ,  B = D = 1. 

( b )  Power-law model 
if x 2 1, 

G,,(x) { (' - x-p 
0 otherwise, 

with 2aE = ( 2 q - 1 ) / ( q -  ')', 

(c) Generalized Pierson-Noskowitz model. Notice that for the PM-model (4.33) the 
spectral peak appears a t  ($)ik, [but in the original frequency spectrum at (gkm)i] .  
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To obtain a spectrum with variable bandwidth and slope we generalize the PM- 
spectrum slightly: 

In  (a) and (b )  ,E; is Gauss' hypergeometric series and in (c) WK,A is Whittaker's 
function. 

Appendix D. Model parameters used for the figures 
The ocean depth was 

H = 5000 m. 

The standard model of seasonal thermocline with 

d, = 50 m, d, = 100 m, No = 2-6 x lo-, s-l(l5 c.p.h.) 

was used in figures 3, 6, 7, 10 and 12. 

(TH, PL, GPM). Standard parameters are 
Models of the surface wave spectrum E ( k )  are given by (4.33) (PM) and appendix C 

E = 2.79 x lo6 erg/cm2, (c2) = (53 om),, 

Ic, = 7.6 x 10-4 cm-l, urn = 0.86 s-1 (0.137 Hz); 

these were used in figures 4 (PL with q = 3, GPM with q = 7), 6 and 7 (PL with p = 3), 
and 8-12 (PM). Figure 11 additionally uses PM with E = 2.79 x lo6 erg/cm2, 
k, = 3.4 x 10-4 cm-l and urn = 0.59 s-1 (0.092 Hz). The bandwidth of PM is 

2aE = #(5 /2~)1  = 2.4. 

For all figures the spreading function (4.39) was used, with p = 1 in figures 5-7, 
p = 2 in figure 8 and p = 3 in figures 9-12. The bandwidth of A ,  is 

1 
20- -- ( 4 ~ )  ! ! (2p - 1) ! ! 

,A - 27r(493--1)!!(2p)!!' 
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